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IS considered for large positive values of a and b, the parameters tend to
infinity in such a manner that the quotient b/a = ¢ is a constant greater than
1. In a recent paper, Mahler showed that the integral tends more rapidly to O
than any finite negative power of a and he gives an upper bound of the
integral. As Mahler admitted, his results do not imply estimates of the form

= O(e ~2). Our results give /= &(e ~¢78). Mahler's technique is based on
integration by parts. Here we use a different technique, based on complex

variables, and we construct the leading term and the first terms in the asymp-
totic expansion.

Note. | am grateful to Prof. H.A. Lauwerier, who taught me the basics of

asymptotics through well chosen and nice examples. This paper is written with
his style in view.

MAHLER’S APPROACH
0 uite recently the physicist J. Lekner of the Victoria University of
New Zealand, presented the follows tegral
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alian National University. Lekner was interested n
lues of the parameters g, b. He used this integral
for d escnb ng the Rayleigh ap proximation for a reflection amplitude in the
theory of electromagnetic and particle waves. See formula 6.64 mn [2]. Mahl

[3] proved the following two theorems.

[HEOREM 1. Assume that the two positive parameters a and b tend to + o0 in
such a manner that the quotient b/a = c remains equal to a constant ¢ > 1. Then
the integral I in (1.1) tends more rapidly to O than any finite, negative, power of
a.

In other words, the mtegral I 1s asymptotically equal to zero with respect to
the scale {a """} as a—oc0. Th
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HEOREM 2. Denote by A(a) a monotone, increasing, positive-valued continuous
functzon of a whzch tends arbitrarily slowly to + 00 as a tends to + oo, further let
C>0 be an arbitrarily large positive constant. Then for all sufficiently large posi-
tive a the integral (1.1) satisfies the inequality

1] < exp

(1.2)

Mahler suggests to take for A4 the m-times iterated logarithm

In,.(a) = In(In(...(In a)...)), (m logs),

where m 1s any posmve mteger )bserve that in (1.2) the ratio C/A4 (a) tends
to 0. As Mabhl mits, his result does not quite imply the estimate
Il = O(e™9), and he concludes his paper with the words ‘and I do not know
whether it is true’. From our results it follows that || = ©(e ~%™%), and the

purpose of the paper is to give a complete description of the asymptotic
behawour of 1.

1s result by considering

C
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I = lfF(u)laf-‘ff, F(u) = (1.3)

[his representation easily follows by using b = ac and introducing a new vari-
able of integration u by writing x = au. Then Mahler used integration by
parts to prove the theorems.

2. COMPLEX VARIABLE APPROACH
As remarked earlier, the above theorems give only a partial result, since no
information 1s given on the leading term of the asymptotic estimate and of the
terms 1n the asymptotic expansion. It does not seem possible that one can
obtain these leading terms by using only real integration variables. Therefore
we replace (1.1) by a loop integral in the complex plane, which gives the
required information. But first we transform (1.1) into an integral on the inter-
val [0,00). It 1s easier to handle then the various branch-points of the
integrand, since one of them 1s sent to co by this transformation.

Let us wnite t = (x —a)/(b —x). Then we obtain
00 t—*2ai(t +t1)2aidt

L= Aof (t +1,)22 (1 +1)(1+ct)

(2.1)

where

2 ¢ +1
2¢C

(2.2)
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1 = (2c)"2bf(c + 1M (c — 1) Tt (2.3)

all that ¢ >1. Hence we have the inequalit;

0<1< 2 ctl

¢+ 1 2C

<.

Satlsfy —1<- 12 < 11 <- 1/ c<0. Si ce €18 assun to be

- , ing a proper loop integral based on (2.1), we compute the sta-
tionary pomt(s) of the integrand.
We write

t T2+ 1y )
(1 +f2)2bi

ntroducing the function

&) = Int —In(t +¢;)+cln(t +1,). (2.4)

For t >0 we assume real values of the loganthm
1fy that

— 2ai ¢(1)

s. It is straightforward to ver-

B c(t +1/c_)_
¥(1) = t(t 1y )¢ +t2) (2:3)

Hence ¢ has a (double) stationary point at —1/c. It follows that we can
expand

&) = &(—1/c)+ %—-q,'"(-—- /et +1/cP3+0(t +1/¢). (2.6)

A few computations give

¢ru(_____ 1/6‘) —_— ____g.____l4c4 ¢ +21 : (27)
(c =1)

We observe that (2.1) has a double stationary point outside the interval of
integration, and that this point coincides with a single pole of the mtegrand
From an asymptotic point of view, this combination of phenomena is not just
trivial. However, in Lauwerier’s book the theory needed to handle this problem
is presented for an analogous case.

3. A LOOP INTEGRAI
The final preparatory step is to introduce a suitable loop integral of which the

path of integration can be shifted near to the stationary point at —1/c. We
introduce

;- —8+ioo (_Z)"Zai(t +tl)2m'dt
- f (t +1,)(1+1)(1+ct)

—O0—ioo

(3.1)
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nat the in 1S conver gem at co. 1]
initia between a/ 2 nd 37/2. The mun o7 nterp
his ch nt, but it brings a nice sy mmetry in the relau on between
ience we assume that for negamre values of ¢ the phase of —¢ equals
maining many-valued functions are chosen in the
and ¢ +1, are zero for posi-

First we show, by modifying the vemcal D ath of
1m l EUHCHOH Of a an

1 negative

of stationary

1ase from asymptoucs.
the interval [0,00). At the upper side of this

interval, where argz = 0, we have

(____t)""?.ai —_ (e**wi ¥ D“Zdime-Zwa 17 -"Zai-

At the lower side, where argt = 2mi, we have

(____t)--lai — (emwiltlebri)mlai — evaltl--Zai_

I'he integration near the origin gives no problems. So we ar
J = —2sinh(27a)l/A,
where A is given in (2.3).

4. ASYMPTOTIC EXPANSION
We slightly change the phase function introduced in (2.4) by writing

&(t) = In(e " ™t)—In(z +1¢,)+cln(t +1,). (4.1)
['he formulas (2.5), (2.6) and (2.7) also hold for this new ¢. V

 siay dt
J = 2iag(t) :
Bfe (1+2)(1+cr)

where £ 1s the above introduced vertical, now with § = 1/¢ and with a small

semi-circle at the right of the pole at —1/¢. We introduce the transformation
of variables (see (2.6))

' ¢,,,( r /c) 7k (4.2)

and we choose the branch that satisfies w ~ ¢ +1/c in a neighbourhood of the
statlonary pomnt —1/c.

On using (4.1), (4.2) in (3.1), we obtain
g, dw
J=Bfe f W)= (4.3)

where
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B = ¢ 24¥7V) = (¢ —1)/A, (4.4)
W at

0= ____¢Hz(___ E/C). 4

Since p 1s positive (see (2.7)), the ‘best’ p
path defined by the rays

, (4.5)

n 1n (4.3) 1s the steepest descent

argw = —a/2, argw = /6. (4.7)

plane near ¢t = — 1/c¢. In order to avm d

mall circular arc near the ongin. Th
g m —io0 to coexp(7i/6), and the pole at the origin 1s at the
sxde of the comour

: (4.3)

tegratl()n.

L ipnaw’
= f33 Wk g, (4.9)

as a—oo. To compute F; we use the path described by (4.7). Fy needs some
special care. We write

—Ir coexp(in/6) 1 . 3 /6 1. 3 e
=[[ + ]e"'“awmdwa—i[e“weda

— 1 00 rexp(im/6) w —a/2

for any positive number r. The first two integrals cancel. In the limit r—0 the
third one assumes the value 2#i/3, which 1s 1/3 of the residue of the pole.
Hence Fy = 2#i/3. The remaining integrals follow straightforwardly:

00 1 3
L . — = Law .
Fk — [emk/6____e zwk/2]fe 3 wk ldw
0

= 23’ —imk/Ssin(kw/3)T(k/3)pa/3)" %3, k = 1,2,3,...

Observe that this result can also be inte:
(4.4) and (4.9) we obtain the final result

* We do not prove that the function f admits such a contour; to do so, we should examine the

mapping (4.2) more globally. For the construction of the asymptotic expansion we only need a lo-
cal analysis around the origin.

preted for k = 0. Combining (3.2),
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btained by using (4 2), (4.5), ¢ 4 3). Thu
- 1 f=0 e cgc +12 cq cgc +1!
P =1 TP TR T e —1) S5(c — 1)*

2¢%(3c* +17c* +24) 8c°(3¢* +3¢*+10)
35(c — 1)’ 35(c —1)°

Cqg = — Cs =

5. A FOURIER INTEGRAL
When 1n (1.3) we take
= —InF(u) = In(u —1)~In(u + D +cln(c +u)—cln(c —u) (5.1)

as a new vanable of integration, we obtain

the Fourier integral

cO o~ dt uz - l C2 —_ u2
— 2a” N — s .
I W{O e 2g(n)dt, g(t) = — du D)
By considering the mapping uw—¢ in more detail, we see that it is one-to-one on

1,cl, and that, Consequently , § 1s a C*-function on R. Moreover, g is
exponentially small at +=o0. Th

g(t) = 0(e"'°), as t—— o0, g(t) = 0(e™"), as t— + oo0.

[his easily follows from (5.1) and (5.2). By using these properties, Theorem 1
follows immediately.

Lhe function g is singular at ¥ = 0, that is, at + = —i7. Hence, we can
shift the contour of integration in (5.2) downwards to this pomt and we can
expand the function g at this singularity. Observe that the exponential func-
tion 1n (5.2) assumes the value exp(—2#a) at this point. This dominant factor

also occurs n (4. 10) and we expect that (5.2) can be used to obtain the same
or a sumular expansion.

(5.2)
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